Lớp 8

Cách chia đa thức một biến đã sắp xếp – Chinh phục toán lớp 8 chi tiết nhất

Rate this post

Đa thức và đơn thức được xem là những kiến thức cơ bản nhất có trong chương trình toán lớp 8. Trong bài viết hôm nay thì các bạn sẽ được tìm hiểu về kiến thức mới đó là chia đa thức một biến đã sắp xếp. Vào bài cùng cô các em nhé!

Các kiến thức cần nhớ 

Muốn thực hiện giải một bài toán 8 chia đa thức một biến đã sắp xếp chúng ta cần  hiểu được lý thuyết của chúng cũng như phân biệt được dạng bài tập.

Chia đa thức một biến đã sắp xếp

Để chia đa thức một biến A Cho một đa thức B một biến với điều kiện B#0, đầu tiên chúng ta cần sắp xếp những đa thức này theo lũy thừa một cách giảm dần cùng một biến. Sau đó sẽ thực hiện chia như những phép chia với các số tự nhiên.

chia đa thức một biến đã sắp xếp

Với hai đa thức A và B tùy ý của một biến, B#0. Sẽ tồn tại hai đa thức duy nhất là R và Q, sao cho A= B.Q+R.

Trong đó:

R=0 hoặc bậc của R sẽ thấp hơn bậc của B.

+ Nếu R=0 thì A chia cho B là phép chia hết.

+ Nếu R≠0 thì A chia cho B là phép chia có dư.

Các dạng toán thường gặp

Dạng 1: Tìm số dư, thương của phép chia đa thức một biến đã sắp xếp

Phương pháp giải: Ta cần sắp xếp những đa thức này theo sự giảm dần của lũy thừa cùng một biến và thực hiện chia như những số tự nhiên.

Dạng 2:  Xác định các hằng số a và b sao cho thỏa mãn phép chia là phép chia hết.

Phương pháp: dùng tính chất của phép chia R=0 để tìm được a và b.

Những bài tập thường gặp về chia đa thức một biến đã sắp xếp

Một số dạng bài tập chia đa thức 1 biến đã sắp xếp chúng ta thường gặp đó là:

Bài 1: Thực hiện các phép chia đa thức một biến đã sắp xếp sbt:

a, (2x3 – 26x – 24):(x2 + 4x + 3)

b, (x3 – 9x2 + 28x – 30):( x – 3)

Hướng dẫn:

a) Ta có phép chia

Vậy (2x3 – 26x – 24) = (x2 + 4x + 3)(2x – 8)

b) Ta có phép chia

Vậy (x3 – 9x2 + 28x – 30) = (x – 3)(x2 – 6x + 10)

Bài 2: Tính nhanh các phép chia đa thức một biến đã sắp xếp sau:

a) (4x2 – 9y2) : (2x – 3y);               b) (27x3 – 1) : (3x – 1);

c) (8x3 + 1) : (4x2 – 2x + 1);             d) (x2 – 3x + xy -3y) : (x + y)

Đáp án và hướng dẫn giải bài:

a) (4x– 9y2) : (2x – 3y) = [(2x)2 – (3y)2] : (2x – 3y) = (2x –3y)(2x +3y) : (2x –3y) = 2x + 3y;

b) (27x3 – 1) : (3x – 1) = [(3x)3 – 1] : (3x – 1) = (3x – 1) [(3x)2 + 3x + 1] : (3x – 1) = 9x2+ 3x + 1

c) (8x3 + 1) : (4x2 – 2x + 1) = [(2x)3 + 1] : (4x2 – 2x + 1)

= (2x + 1)[(2x)2 – 2x + 1] : (4x– 2x + 1)

= (2x + 1)(4x2 – 2x + 1) : (4x2 – 2x + 1) = 2x + 1

d) (x2 – 3x + xy -3y) : (x + y)

= [(x2 + xy) – (3x + 3y)] : (x + y)

= [x(x + y) – 3(x + y)] : (x + y)

= (x + y)(x – 3) : (x + y)

= x – 3.

Bài 3: Tìm các số nguyên n để thỏa mãn giá trị của biểu thức sau: n3 + 6n2 -7n + 4 sẽ chia hết cho biểu thức n – 2.

Hướng dẫn:

Ở đây, ta sẽ thực hiện đặt phép chia để tìm số dư và tìm giá trị điều kiện của n để thỏa mãn đề bài. Nhưng bài này chúng ta có thể làm theo cách biến đổi sau:

Ta có n3 + 6n2 -7n + 4 = (n3 – 3n2.2 + 3.n.22 – 8) + 12n2 – 19n + 12

= (n – 2)3 + 12n(n – 2) + 5(n – 2) + 22

Khi đó ta có: (n3 + 6n2 – 7n + 4)/(n – 2) = (n – 2)2 + 12n + 5 + 22/(n – 2)

Để giá trị của biểu thức n3 + 6n2 -7n + 4 chia hết cho giá trị của biểu thức n – 2.

⇔ (n – 2) ∈ UCLN(22) = {± 1; ± 2; ± 11; ± 22}

⇒ n ∈ {- 20; – 9;0;1;3;4;13;24}

Vậy các giá trị nguyên của n cần tìm là n ∈ {- 20; – 9;0;1;3;4;13;24}

Những phương pháp để học tập hiệu quả

Để có một phương pháp học toán hiệu quả, đặc biệt là nắm chắc được kiến thức để giải những bài tập dạng chia đa thức cho một biến đã sắp xếp thì chúng ta cần lưu ý một số vấn đề sau:

Nắm chắc được các định nghĩa và lý thuyết

Không giống như những môn xã hội là phải học thuộc lòng nhưng với môn toán thì bạn cần phải nắm chắc những định nghĩa, công thức, tính chất thì mới có thể vận dụng được để làm bài tập.

Không dồn vào để học

Với những môn tự nhiên đặc biệt là toán thì bạn cần phải nắm vững những kiến thức của bài trước thì mới học tốt được bài sau. Vì thế, học dồn là một việc không thể làm đối với môn học này. Toán là một môn học cần phải có quá trình áp dụng và trao dồi mỗi ngày. Muốn ghi nhớ lâu cần áp dụng được những kiến thức vào giải bài tập.

chia đa thức một biến đã sắp xếp

Ghi chép và lắng nghe giải bài

Vì khi giảng bài không phải thầy cô giảng đều nằm trong sách nên bạn cần ghi chép lại đầy đủ bởi chúng rất cần thiết. Nếu như chỉ nghe mà không ghi lại thì chúng ta có thể sẽ nhanh quên.

Mạnh dạn hỏi

Trong quá trình học tập, chúng ta sẽ không tránh khỏi những khúc mắc. Nhiều bạn vì ngại thầy cô mà khong hỏi, nhờ thầy cô giải đáp. Điều này về lâu dài sẽ khiến bạn gặp lỗ hổng kiến thức.

Nên đọc bài mới trước ở nhà

Đọc bài trước ở nhà là một cách tiếp thu bài mới rất tốt. Nếu như có sự chuẩn bị trước bạn sẽ dễ dàng bắt kịp được bài ở trên lớp. Hơn nữa, đọc trước sẽ đưa ra được những câu hỏi thắc mắc để lên lớp hỏi được thầy cô.

Ngoài học lý thuyết cần làm nhiều bài tập

Khi làm bài tập thì bạn sẽ áp dụng được mọi công thức mình đã học. Càng tiếp xúc và làm nhiều dạng bài tập bạn sẽ rút ra cho mình được nhiều kinh nghiệm.

Tự học

Trên đây là tất cả những lý thuyết và bài tập có liên quan đến chia đa thức một biến đã sắp xếp. Nếu bạn còn bất kỳ câu hỏi nào thì hãy đăng ký khóa học của Wikihocttap nhé. Chúc các bạn luôn chăm ngoan và học tốt.

xem thêm >>>

Minh Phương

Là 1 giáo viên Toán tôi luôn nỗ lực không ngừng để mang đến cho học sinh những bài học sinh động, lý thú, giúp các em vững vàng kiến thức và say mê, yêu thích môn Toán hơn.

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button