Định nghĩa và ý nghĩa của đạo hàm – Học tốt đại số lớp 11
Nếu có ai hỏi “Trong chương trình đại số lớp 11, kiến thức nào là khó hiểu nhất?”. Chắc chắn đại đa số các em học sinh lớp 11 sẽ trả lời là “Đạo hàm” Vậy, đạo hàm có khó như lời đồn? Cùng tìm hiểu điều đó trong bài giảng: Định nghĩa và ý nghĩa của đạo hàm nhé!
Mục tiêu:
- Hiểu được định nghĩa và ý nghĩa của đạo hàm.
- Biết được ứng dụng của đạo hàm trong đời sống.
- Tính được đạo hàm tại một điểm.
Lý thuyết cần nắm
Định nghĩa và ý nghĩa của đạo hàm – Đại số lớp 11
Đạo hàm tại một điểm
1. Định nghĩa đạo hàm tại một điểm
Cho hàm số y = f(x) xác định trên khoảng (a; b) và x0 ∈ (a; b). Nếu tồn tại giới hạn (hữu hạn)
thì giới hạn đó được gọi là đạo hàm của hàm số y = f(x) tại x0 và kí hiệu là f’(x0) (hoặc y’(x0)), tức là
Chú ý:
Đại lượng Δx = x – x0 gọi là số gia của đối số x tại x0.
Đại lượng Δy = f(x) – f(x0) = f(x0 + Δx) – f(x0) được gọi là số gia tương ứng của hàm số. Như vậy
2. Cách tính đạo hàm bằng định nghĩa
Bước 1. Giả sử Δx là số gia của đối số x tại x0, tính Δy = f(x0 + Δx) – f(x0).
3. Quan hệ giữa sự tồn tại của đạo hàm và tính liên tục của hàm số
Định lí 1
Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại x0.
Chú ý:
a) Nếu y = f(x) gián đoạn tại x0 thì nó không có đạo hàm tại x0.
b) Nếu y = f(x) liên tục tại x0 thì có thể không có đạo hàm tại x0.
4. Ý nghĩa hình học của đạo hàm
Định lí 2
Đạo hàm của hàm số y = f(x) tại điểm x0 là hệ số góc của tiếp tuyến M0T của đồ thị hàm số tại điểm M0(x0; f(x0)).
Định lí 3
Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm M0(x0; f(x0)) là
y – y0 = f’(x0)(x – x0)
trong đó y0 = f(x0).
5. Ý nghĩa vật lí của đạo hàm
Vận tốc tức thời: v(t0) = s’(t0).
Cường độ tức thời: I(t0) = Q’(t0).
Đạo hàm trên một khoảng
Định nghĩa
Hàm số y = f(x) được gọi là có đạo hàm trên khoảng (a; b) nếu nó có đạo hàm tại mọi điểm x trên khoảng đó.
Khi đó, ta gọi hàm số f’: (a; b) → R
x → f’(x)
là đạo hàm của hàm số y = f(x) trên khoảng (a; b), kí hiệu là y’ hay f’(x).
Giải bài tập SGK Đạo hàm
Bài 1
Tìm số gia của hàm số f(x) = x3, biết rằng:
a.x0 = 1; Δx = 1;
b.x0 = 1; Δx = -0,1;
Lời giải:
a. Δy = f(x0 + Δx) – f(x0) = f(1 + 1) – f(1) = f(2) – f(1) = 23 – 13 = 7
b. Δy = f(x0 + Δx) – f(x0) = f(1 – 0,1) – f(1) = f(0,9) – f(1) = (0,9)3 – 13 = -0,271.
Bài 2
Tính Δy và của các hàm số sau theo x và Δx:
Lời giải:
Gọi Δ x là số gia của biến số x.
Bài 3
Tính ( bằng định nghĩa) đạo hàm của mỗi hàm số tại các điểm đã chỉ ra:
Lời giải:
Bài 4
Chứng minh rằng hàm số:
Không có đạo hàm tại điểm x = 0 nhưng có đạo hàm tại điểm x = 2.
Lời giải:
⇒ Không tồn tại đạo hàm của f(x) tại x = 0.
Bài 5
Viết phương trình tiếp tuyến đường cong y=x3.
a. Tại điểm (-1; -1);
b. Tại điểm có hoành độ bằng 2;
c. Biết hệ số góc của tiếp tuyến bằng 3.
Lời giải:
Với mọi x0 ∈ R ta có:
a) Tiếp tuyến của y = x3 tại điểm (-1; -1) là:
y = f’(-1)(x + 1) + y(1)
= 3.(-1)2(x + 1) – 1
= 3.(x + 1) – 1
= 3x + 2.
b) x0 = 2
⇒ y0 = f(2) = 23 = 8;
⇒ f’(x0) = f’(2) = 3.22 = 12.
Vậy phương trình tiếp tuyến của y = x3 tại điểm có hoành độ bằng 2 là
y = 12(x – 2) + 8 = 12x – 16.
c) k = 3
⇔ f’(x0) = 3
⇔ 3x02 = 3
⇔ x02 = 1
⇔ x0 = ±1.
+ Với x0 = 1 ⇒ y0 = 13 = 1
⇒ Phương trình tiếp tuyến : y = 3.(x – 1) + 1 = 3x – 2.
+ Với x0 = -1 ⇒ y0 = (-1)3 = -1
⇒ Phương trình tiếp tuyến : y = 3.(x + 1) – 1 = 3x + 2.
Vậy có hai phương trình tiếp tuyến của đường cong y = x3 có hệ số góc bằng 3 là y = 3x – 2 và y = 3x + 2.
Bài 6
Viết phương trình tiếp tuyến của hypebol
a) Tại điểm ;
b) Tại điểm có hoành độ bằng -1;
c) Biết rằng hệ số góc của tiếp tuyến bằng
Lời giải:
Ta có: Với mọi x0 ≠ 0:
b) Tại x0 = -1
⇒ y0 = -1
⇒ f’(x0) = -1.
Vậy phương trình tiếp tuyến của đường cong tại điểm có hoành độ -1 là:
y = -1(x + 1) – 1 = -x – 2.
⇒ Phương trình tiếp tuyến:
Vậy có hai phương trình tiếp tuyến của hypebol có hệ số góc
bằng
Bài 7
Một vật rơi tự do theo phương trình s = 1/2 gt2, trong đó g≈9,8m/s2 là gia tốc trọng trường.
a. Tìm vận tốc trung bình của chuyển động trong khoảng thời gian từ t (t = 5s) đến t + Δt, trong các trường hợp Δt=0,1s; Δt=0,05s; Δt=0,001s.
b. Tìm vận tốc tức thời của chuyển động tại thời điểm t = 5s.
Lời giải:
a) Vận tốc trung bình trong khoảng thời gian từ t đến t + Δt là:
b) Vận tốc tức thời tại thời điểm t = 5s chính là vận tốc trung bình trong khoảng thời gian (t; t + Δt) khi Δt → 0 là :
Lời kết
Đạo hàm là nội dung rất quan trọng trong chương trình đại số lớp 11. Các bài tập thuộc nội dung này sẽ xuất hiện với mật độ dày đặc trong đề thi THPTQG. Chính vì vậy, hãy nắm chắc nội dung này ngay từ những kiến thức đầu tiên về: Định nghĩa và ý nghĩa của đạo hàm nhé!
>> Xem thêm:
- Phương trình đường thẳng trong không gian
- Tính chất của hai tiếp tuyến cắt nhau
- Tích phân
- Sự đồng biến, nghịch biến của hàm số
- Nguyên hàm