Hai đường thẳng chéo nhau và hai đường thẳng song song

Rate this post

Ở bài học trước, các bạn đã được học về đường thẳng. Tiếp nối các kiến thức đó, bài giảng ngày hôm nay của wikihoctap sẽ giới thiệu đến các bạn về “Hai đường thẳng chéo nhau và hai đường thẳng song song”. Hãy cùng khám các kiến thức lý thuyết được chúng tôi chọn lọc và giải một số các bài tập về nội dung này nhé!

Mục tiêu bài học : Hai đường thẳng chéo nhau và hai đường thẳng song song 

  • Nắm được các vị trí tương đối của hai đường thẳng.
  • Nắm được tính chất, định lý, hệ quả của hai đường thẳng song song.
  • Giải được các bài tập liên quan đến vị trí tương đối của hai đường thẳng.

Kiến thức cơ bản của bài học : Hai đường thẳng chéo nhau và hai đường thẳng song song

Sau đây là toàn bộ kiến thức cơ bản của bài học

1. Vị trí tương đối của hai đường thẳng phân biệt

Cho hai đường thẳng a và b. Căn cứ vào sự đồng phẳng và số điểm chung của hai đường thẳng ta có bốn trường hợp sau:

a. Hai đường thẳng song song: cùng nằm trong một mặt phẳng và không có điểm chung, tức là

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án
Hai đường thẳng chéo nhau và hai đường thẳng song song

b. Hai đường thẳng cắt nhau: chỉ có một điểm chung.

a cắt b khi và chỉ khi a ⋂ b = I.

c. Hai đường thẳng trùng nhau: có hai điểm chung phân biệt.

a ⋂ b = {A, B} ⇔ A ≡ B

d. Hai đường thẳng chéo nhau: không cùng thuộc một mặt phẳng.

a chéo b khi và chỉ khi a, b không đồng phẳng.

hai đường thẳng chéo nhau và hai đường thẳng song song
Hai đường thẳng chéo nhau và hai đường thẳng song song

a song song với b

hai đường thẳng chéo nhau và hai đường thẳng song song

a cắt b tại giao điểm I

hai đường thẳng chéo nhau và hai đường thẳng song song

a và b cắt nhau tại vô số điểm (trùng)

hai đường thẳng chéo nhau và hai đường thẳng song song

a và b chéo nhau

2. Hai đường thẳng song song

Tính chất 1: Trong không gian, qua một điểm nằm ngoài một đường thẳng có một và chỉ một đường thẳng song song với đường thẳng đó.

Tính chất 2: Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì song song với nhau.

Định lí: (về giao tuyến của hai mặt phẳng): Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đôi một song song.

Hệ quả: Nếu hai mặt phẳng lần lượt đi qua hai đường thẳng song song thì giao tuyến của chúng (nếu có) song song với hai đường thẳng đó (hoặc trùng với một trong hai đường thẳng đó).

Hướng dẫn giải bài tập toán SGK lớp 11 bài học : Hai đường thẳng chéo nhau và hai đường thẳng song song 

Học thì nên đi đôi với hành .Nắm được nguyên tắc như vậy thì sau khi học xong lý thuyết chúng ta nên bắt tay ngay vào làm những bài tập cơ bản củng cố kiến thức . Sau đây cùng wikihoctap đi giải bài tập trong SGK nhé !

Bài 1 :

Sau đây là đề bài của bài toán cần ta giải : Cho tứ diện ABCD. Gọi P, Q, R và S là bốn điểm lần lượt lấy trên bốn cạnh AB, BC, CD và DA. Chứng minh rằng nếu bốn điểm P, Q, R và S đồng phẳng thì:

a) Ba đường thẳng PQ, SR và AC hoặc song song hoặc đồng quy.

b) Ba đường thẳng PS, RQ và BD hoặc song song hoặc đồng quy.

Lời giải:

hai đường thẳng chéo nhau và hai đường thẳng song song

a) Ta có:

PQ = (ABC) ∩ (PQRS)

RS = (PQRS) ∩ (ACD)

AC = (ABC) ∩ (ACD)

Vậy hoặc PQ, RS, AC đồng qui hoặc song song.

b) PS =(ABD) ∩ (PQRS)

RQ = (BCD) ∩ (PQRS)

BD = (ABD) ∩ (CBD)

Vậy PS, RQ, BD đồng quy hoặc song song.

Bài 2 :

Đề bài cho ta những dữ liệu sau đây : Cho tứ diện ABCD và ba điểm P, Q, R lần lượt lấy trên ba cạnh AB, CD, BC. Tìm giao điểm S của AD và mặt phẳng (PQR) trong hai trường hợp sau đây.

a) PR song song với AC;

b) PR cắt AC.

Lời giải:

a) PR // AC

hai đường thẳng chéo nhau và hai đường thẳng song song

mp(PQR) và mp(ACD) lần lượt chứa hai đường thẳng song song PR // AC

⇒ (PQR) ∩ (ACD) = Qt là đường thẳng song song với AC và PR.

Gọi Qt ∩ AD = S

⇒ S = AD ∩ (PQR).

b) PR ∩ AC = I.

hai đường thẳng chéo nhau và hai đường thẳng song song

Có : Q ∈ (ACD) ∩ (PQR)

+ (ABC) ∩ (PQR) = PR.

+ (ACD) ∩ (ABC) = AC

+ (ACD) cắt (PQR)

⇒ PR; AC và giao tuyến của (ACD) và (PQR) đồng quy

Mà PR ∩ AC = I

⇒ I ∈ (ACD) ∩ (PQR).

⇒ (ACD) ∩ (PQR) = QI.

trong (ACD): QI ∩ AD = S chính là giao tuyến của (PQR) và AD.

Bài 3 :

Đề bài cho ta những dữ liệu để giải bài toán như sau : Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD và G là trung điểm của đoạn MN.

a) Tìm giao điểm A’ của đường thẳng AG và mp(BCD).

b) Qua M kẻ đường thẳng Mx song song với AA’ và Mx cắt (BCD) tại M’.

c) Chứng minh GA = 3GA’

Lời giải:

hai đường thẳng chéo nhau và hai đường thẳng song song

a) Có: MN ⊂ (ABN)

⇒ G ∈ (ABN)

⇒ AG ⊂ (ABN).

Trong (ABN), gọi A’ = AG ∩ BN.

⇒ A’ ∈ BN ⊂ (BCD)

⇒ A’ = AG ∩ (BCD).

b) + Mx // AA’ ⊂ (ABN) ; M ∈ (ABN)

⇒ Mx ⊂ (ABN).

M’ = Mx ∩ (BCD)

⇒ M’ nằm trên giao tuyến của (ABN) và (BCD) chính là đường thẳng BN.

⇒ B; M’; A’ thẳng hàng.

Giải bài tập Đại số 11 | Để học tốt Toán 11

⇒ BM’ = M’A’ = A’N.

c) Áp dụng chứng minh câu b ta có:

ΔMM’N có: MM’ = 2.GA’

ΔBAA’ có: AA’ = 2.MM’

⇒ AA’ = 4.GA’

⇒ GA = 3.GA’.

Lời kết :

Hy vọng với những kiến thức lý thuyết, phần hướng dẫn giải bài tập sách giáo khoa và bài tập tự luyện trên đây sẽ giúp các em có cái nhìn bao quát và tổng thể về hai đường thẳng chéo nhau và hai đường thẳng song song. Hãy nắm vững các kiến thức này bởi chúng sẽ là nền tảng để các bạn giải quyết các bài toán hình học về sau đấy!

Xem thêm :

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *